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Abstract
Using the field theoretic renormalization group and the operator-product
expansion, the model of a passive vector field (a weak magnetic field in the
framework of the kinematic MHD) advected by the velocity field which is
governed by the stochastic Navier–Stokes equation with the Gaussian random
stirring force δ-correlated in time and with the correlator proportional to
k4−d−2ε is investigated to the first order in ε (one-loop approximation). It
is shown that the single-time correlation functions of the advected vector
field have anomalous scaling behavior and the corresponding exponents are
calculated in the isotropic case, as well as in the case with the presence of
large-scale anisotropy. The hierarchy of the anisotropic critical dimensions
is briefly discussed and the persistence of the anisotropy inside the inertial
range is demonstrated on the behavior of the skewness and hyperskewness
(dimensionless ratios of correlation functions) as functions of the Reynolds
number Re. It is shown that even though the present model of a passive
vector field advected by the realistic velocity field is mathematically more
complicated than, on one hand, the corresponding models of a passive vector
field advected by ‘synthetic’ Gaussian velocity fields and, on the other hand,
than the corresponding model of a passive scalar quantity advected by the
velocity field driven by the stochastic Navier–Stokes equation, the final one-
loop approximate asymptotic scaling behavior of the single-time correlation or
structure functions of the advected fields of all models are defined by the same
anomalous dimensions (up to normalization).
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1. Introduction

Theoretical explanation of possible deviations from the classical phenomenological
Kolmogorov–Obukhov (KO) theory which is suggested by both natural and numerical
experiments [1–5] still remains one of the most interesting open problems in fully developed
turbulence and related models.

According to the first and second Kolmogorov hypotheses of the KO theory, the single-
time structure functions of the velocity field in the inertial range (l � r � L)

SN(r) = 〈[vr(t, x) − vr(t, x′)]N 〉, r = |x − x′| (1)

are independent of both the external (integral) scale L and internal (viscous) scale l, where
vr denotes the component of the velocity field directed along the vector r = x − x′. Simple
dimensional analysis then leads to the scale-invariant form of the structure functions (1)

SN(r) = const × (ε̄r)N/3, (2)

where ε̄ is the mean dissipation rate.
But, as was mentioned above, both experimental and theoretical investigations lead to

deviations from the KO theory and, in contradiction with the first Kolmogorov hypothesis
[1, 3, 6], the inertial-range behavior of the structure functions (1) must be modified as follows:

SN(r) = (ε̄r)N/3RN(r/L), (3)

with some scaling functions RN . It is supposed that they have powerlike asymptotic behavior
in the region r/L � 1, namely,

RN(r/L) � const × (r/L)qN . (4)

The singular dependence of the structure functions on L in the limit L → ∞ together with
nonlinearity of the exponents qN as functions of N is called ‘anomalous scaling’. Such a kind
of behavior is theoretically explained by strongly developed fluctuations of the dissipation rate
which is encoded in the concept intermittency [1–5].

The effective method for the investigation of a self-similar scaling behavior is the
renormalization group (RG) [7, 8]. If one applies it to the fully developed turbulence based
on the stochastic Navier–Stokes equation [9–12] then the second Kolmogorov hypothesis can
be proved for a variety realistic random forces [12] with the following infrared (IR) (r 	 l)

scaling critical dimensions for the structure functions (1)

�[SN ] = −N/3, (5)

which are given as coefficients of the corresponding RG equations and are in agreement with
the simple dimensional analysis (2). On the other hand, to analyze the behavior of the scaling
functions RN(r/L) in the limit r/L → 0 it is necessary to go beyond the standard RG analysis
and to use the operator-product expansion (OPE) [7, 8, 11, 12]. Application of the OPE leads
to the following powerlike representation of the scaling functions (4):

RN(r/L) =
∑
F

CF (r/L)�F , r/L → 0, (6)

where the summation is implied over some class of composite operators F,�F are their critical
dimensions, and CF are coefficients regular in L−1. The anomalous scaling in the theory of
fully developed turbulence based on the stochastic Navier–Stokes equation is related to the
existence of the composite operators with the negative critical dimensions. These so-called
‘dangerous operators’ lead to singular behavior of the structure functions in the limit r/L → 0
[12] and, roughly speaking, the final asymptotic anomalous behavior is determined by the
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smallest (the most negative) critical dimension. But in the stochastic Navier–Stokes model
dangerous operators enter into the OPE in the form of the infinite families with the spectrum
of critical dimensions unbounded from below. It means that the nontrivial problem of the
summation of their contributions arises. This is still an unsolved problem of the theory.

Nevertheless, during the last two decades great progress was achieved in the theoretical
understanding of the anomalous scaling of the single-time structure or correlation functions
of passive scalar or vector fields advected by given Gaussian statistics of the velocity field.
Although such kind of models is much more easier from a theoretical point of view, the
deviations from the KO theory are surprisingly more noticeable and visible for them than for
the velocity field itself (see, e.g., [13–18]). The main role in these investigations was played
by the so-called ‘rapid change model’ of a passively advected scalar field by a self-similar
Gaussian δ-correlated in time velocity field introduced by Kraichnan [19]. Namely, in this
model, for the first time, the systematic analysis of the corresponding anomalous exponents
was done on the microscopic level. For example, within the so-called ‘zero-mode approach’
to the rapid change model [20] (see also survey paper [5]) the anomalous exponents are found
from the homogeneous solutions (zero modes) of the closed equations for the single-time
correlations. The corresponding analysis of the rapid-change model for the vector (magnetic)
field which was introduced in [21] can be found in [22–24].

The model was also intensively investigated by the field theoretic RG technique, where
systematic perturbation expansion for the anomalous exponents was constructed, and the
exponents were calculated to the second [25] and third [26] orders. Besides, various
descendants of the Kraichnan rapid-change model, namely, models with inclusion of small-
scale anisotropy [27], compressibility [28], the finite correlation time of velocity field
[29, 30] and helicity [31] were studied by the field theoretic RG approach. Moreover,
advection of the passive vector field by the Gaussian self-similar velocity field (with and
without large- and small-scale anisotropies, pressure, compressibility and a finite correlation
time) has been also investigated, all possible asymptotic scaling regimes and crossover among
them have been classified, and anomalous scaling was analyzed [24, 32, 33] (see also survey
paper [34]). The main conclusion of all these studies is that the anomalous scaling remains
valid for all generalized models.

However, although the advection models with the so-called ‘synthetic’ velocity field
describe nicely many of the anomalous features of the genuine turbulent advection of the
scalar or vector quantities, they still remain artificial models, and they can be considered only
as the first step of the investigation of intermittency and anomalous scaling of a scalar or vector
field advection in fully developed turbulence. Moreover, they have some important drawbacks.
For example, the models with the finite correlation time of the velocity field are Galilean non-
invariant [15]. As a consequence, they do not take into account the self-advection of turbulent
eddies. As a result of these so-called ‘sweeping effects’ the different time correlations of the
Eulerian velocity are not self-similar and depend strongly on the integral scale [35]. Thus,
as was discussed in [29], the perturbative expansion in the parameter which characterizes the
energy spectrum of the velocity field in the inertial range is potentially dangerous even in the
case with Gaussian spatial statistics of the velocity field. On the other hand, the Kraichnan
rapid-change model is Galilean invariant and is free of sweeping effects but the model is so
simple that it is not possible to describe some features of genuine turbulence within it (e.g.,
helical effects cannot be investigated within the Kraichnan model [31]).

Therefore, the crucial point for further progress in understanding the anomalous scaling
at the microscopic level is to go beyond Gaussianity of the velocity field and investigate the
anomalous scaling of the single-time structure or correlation functions of scalar or vector fields
advected by a non-Gaussian velocity field governed by the stochastic Navier–Stokes equation.
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In the case of a scalar-field advection the first steps in this direction were already done
in [36], where the anomalous exponents for the single-time structure functions of the scalar
field were calculated to the second order in the corresponding perturbation theory. It was
shown that the mechanism of the origin of the anomalous scaling is the same as in the case
of the Kraichnan model with Gaussian statistics of the velocity field, namely, it is related to
the existence in the model of composite operators with negative scaling dimensions. Further,
it was shown that in the first-order perturbation theory the anomalous exponents are the same
as in the case of the Kraichnan rapid-change model (up to a normalization) but in the second
order they are sufficiently different. On the other hand, the systematic analytical analysis
of the anomalous scaling of correlation functions of a passive vector field advected by the
Navier–Stokes velocity field absents at all, although conclusions of such investigations can
be interesting from experimental, as well as theoretical point of view. In this respect, maybe
the most interesting question, which still waits for an answer, sounds as follows. Is there
nontrivial dependence of anomalous exponents of the corresponding correlation functions on
the internal (tensor) structure of the advected field?

In this paper the first step will be to answer the above question, namely, we shall analyze
the spatial structure of the single-time correlation functions of a passive vector quantity (for
example, weak magnetic field) advected by the incompressible velocity field driven by the
stochastic Navier–Stokes equation with a given random stirring force in the presence of
large-scale anisotropy. The model is also known as the kinematic MHD turbulence because
it can be obtained from MHD turbulence when one omits the Lorentz force term in the
equation for the velocity field. This is also the reason why, starting from the next section,
we are working in terms of the kinematic MHD turbulence. Our aim is to calculate the
corresponding anomalous exponents in the first order in ε and to compare the results, on
one hand, with the anomalous exponents obtained within the models with Gaussian statistics
of the velocity field [24, 32, 33] and, on the other hand, with the anomalous exponents
obtained in the model of passive scalar advected by the velocity field driven by the stochastic
Navier–Stokes equation [36].

The main result of this paper is the conclusion that, despite the fact that the present model
of a passively advected vector field by the velocity field driven by the stochastic Navier–Stokes
equation is more complicated from a mathematical point of view than the corresponding model
of a passive scalar advection, the anomalous asymptotic behavior of the single-time correlation
functions (in the case of an advected vector field) and of the single-time structure functions
(in the case of an advected scalar field) is given by the same anomalous dimensions of the
corresponding composite operators in the isotropic case, as well as in the case with the presence
of large-scale anisotropy, at least, within the one-loop approximation.

The model is not interesting only from purely theoretical point of view but it has also
possible practical application in cosmic physics when one can meet situations when relatively
weak small-scale magnetic field evolves on the background of a strong large-scale uniaxial
magnetic field (see, e.g., [37] and also discussion in [24]). One of the interesting questions
which arises in such situations is the question about the influence of the large-scale anisotropy
generated by the large-scale magnetic field on the small-scale statistics of the advected
magnetic field. As was already discussed above, this question is also the main reason for
this paper.

This paper is organized as follows. In section 2, the model is defined and the field
theoretic formulation of the model is given. In section 3, we perform the ultraviolet (UV)
renormalization of the model and the stability of the scaling regime is discussed. In section 4,
the explicit from of the anomalous exponents is found. Obtained results are reviewed and
discussed in section 5.
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2. Field-theoretic formulation of the model of kinematic MHD turbulence

The advection of a passive solenoidal magnetic field b ≡ b(x) (x ≡ (t, x)) in the framework
of the kinematic MHD model is described by the following system of stochastic equations

∂tb = ν0u0�b − (v · ∂)b + (b · ∂)v + fb, (7)

∂tv = ν0�v − (v · ∂)v − ∂P + fv, (8)

where ∂t ≡ ∂/∂t, ∂i ≡ ∂/∂xi,� ≡ ∂2 is the Laplace operator, ν0 is the viscosity coefficient
(in what follows, a subscript 0 will denote bare parameters of the unrenormalized theory),
ν0u0 = c2/(4πσ) represents the magnetic diffusivity (where we have already extracted
dimensionless reciprocal magnetic Prandtl number u0 for convenience), c is the speed of
light, σ is the conductivity, P(x) is the pressure, and v ≡ v(x) is a solenoidal (owing to
the incompressibility) velocity field. Thus, both v and b are divergence-free vector fields:
∂ · v = ∂ · b = 0.

A transverse Gaussian random noise fb = fb(x) with zero mean and the correlation
function,

Db
ij ≡ 〈

f b
i (x)f b

j (0)
〉 = δ(t)Cij (|x|/L′), (9)

represents the source of the fluctuation of the magnetic field b and maintains the steady state
of the system. Here, L′ is an integral scale related to the corresponding stirring, and Cij is a
function finite in the limit L′ → ∞. In what follows, the detailed form of the function Cij

is not important, the only condition which must be satisfied is that Cij decreases rapidly for
|x| 	 L′. If Cij depends on the direction of the vector x and not only on its modulus r = |x|
then it can be considered as a source of large-scale anisotropy. In a more realistic formulation,
the noise can be replaced, e.g., by the term (B · ∂)v, where B is a constant large-scale magnetic
field, the source of anisotropy (see, e.g., [24]).

On the other hand, the transverse random force per unit mass fv = fv(x) in (8) simulates
the energy pumping into the system on large scales. We assume that its statistics is Gaussian
with zero mean and pair correlation function

Dv
ij (x; 0) = 〈

f v
i (x)f v

j (0)
〉 = δ(t)

∫
ddk

(2π)d
D0k

4−d−2εPij (k) eik · x, (10)

where Pij (k) = δij − kikj /k2 is the ordinary transverse projector, d denotes the spatial
dimension of the system, D0 ≡ g0ν

3
0 > 0 is the positive amplitude, and the physical value of

formally small parameter 0 < ε � 2 is ε = 2. It plays an analogous role as the parameter
ε = 4 − d in the theory of critical behavior and the introduced parameter g0 plays the role of
the coupling constant of the model. In addition, g0 is a formal small parameter of the ordinary
perturbation theory and it is related to the characteristic ultraviolet (UV) momentum scale 


(or inner length l ∼ 
−1) by the following relation:

g0 � 
2ε. (11)

The correlation function (10) is chosen in the form which, on one hand, is suitable for
the description of the real infrared energy pumping to the system (for ε → 2 the function
D0k

4−d−2ε is proportional to δ(k) for appropriate choice of the amplitude factor D0, which
corresponds to the injection of energy to the system through interaction with the largest
turbulent eddies) and, on the other hand, its powerlike form gives the possibility of applying
the RG technique for the analysis of the problem [8, 11, 12, 38].

The integration in (10) is restricted by the condition k ≡ |k| > m, where m = 1/L

is another integral scale. It provides the necessary infrared regularization. Such form of

5



J. Phys. A: Math. Theor. 42 (2009) 275501 E Jurčišinová et al

regularization is the convenient choice from a calculational point of view, although, a precise
form of regularization is not essential. Besides, in what follows, we shall always assume that
L′ 	 L.

The most important feature of the stochastic model (7)–(10) is that the model is Galilean
invariant as a consequence of the fact that the Gaussian distribution of the random force
(10) is delta-correlated in time. It means that the corresponding perturbative expansions in
the nonlinearities of the model are Galilean covariant, i.e., Ward identities, which represent
exact relations between the correlation functions given by the Galilean symmetry, are held in
all orders. Therefore, because the renormalization procedure does not disturb the Galilean
symmetry, these exact relations will be also valid for perturbation expansions obtained by the
RG and OPE. As a consequence, the Galilean invariant quantities as equal-time correlation or
structure functions are not influenced by the sweeping which becomes important for ε � 3/2
for the present model [39]. Mathematically it means that the operators built of velocity field
and its temporal derivatives do not contribute to the OPE for Galilean invariant correlation
functions [8, 11, 12, 38]. On the other hand, physically it means that the sweeping by large-
scale eddies does not influence the relative motion of the fluid or advected quantities within
the inertial interval as was shown in [40] for the model (8), (10) for ε as high as ε = 7/4.

The field theoretic formulation of the present problem is based on the well-known theorem
[41] which asserts that the stochastic problem (7)–(10) is equivalent to the field theoretic model
of the doubled set of fields � = {v, b, v′, b′} with the following action functional

S(�) = 1

2

∫
dt1 ddx1 dt2 ddx2[v′

i (x1)D
v
ij (x1; x2)v

′
j (x2) + b′

i (x1)D
b
ij (x1; x2)b

′
j (x2)]

+
∫

dt ddx{v′[−∂t + ν0� − (v · ∂)]v

+ b′[−∂tb + ν0u0�b − (v · ∂)b + (b · ∂)v]}, (12)

where xi = (ti , xi), i = 1, 2, v′ and b′ are auxiliary transverse fields and Db
ij ,D

v
ij are given in

(9) and (10), respectively, and required summations over dummy indices are assumed.
As a result of the fact that the auxiliary vector field v′(x) is also transverse, i.e., ∂iv

′
i = 0,

one can omit the pressure term in (12). The corresponding term has the following form∫
dt ddx(v′ · ∂)P,

and after the integration by parts it is evident that it vanishes, namely:∫
dt ddx(v′ · ∂)P = −

∫
dt ddxP(∂ · v′) = 0.

Model (12) corresponds to a standard Feynman diagrammatic technique with the nonzero
bare propagators 〈bib

′
j 〉0 = 〈b′

j bi〉∗0, 〈viv
′
j 〉0 = 〈v′

j vi〉∗0, 〈bibj 〉0, and 〈vivj 〉0 (in the frequency–
momentum representation)

〈bi(ω, k)b′
j (ω, k)〉0 = Pij (k)

−iω + ν0u0k2
, (13)

〈vi(ω, k)v′
j (ω, k)〉0 = Pij (k)

−iω + ν0k2
, (14)

〈bi(ω, k)bj (ω, k)〉0 = Cij (k)

|−iω + ν0u0k2|2 , (15)

〈vi(ω, k)vj (ω, k)〉0 = D0k
4−d−2εPij (k)

|−iω + ν0k2|2 , (16)

6
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bibj 0 =

vivj 0 =

vivj 0 =

bibj 0

Figure 1. Graphical representation of the propagators of the model.

Vijl =
vi

vj

vl

Wijl =
bi

vj

bl

Figure 2. The triple (interaction) vertexes of the model. Momentum k is flowing into the vertexes
via the auxiliary fields b′ and v′.

where Cij (k) is the Fourier transform of the function Cij (r/L′) from (9). In the Feynman
diagrams these propagators are represented by lines which are shown in figure 1 (the end with a
slash in the propagators 〈bib

′
j 〉0 and 〈viv

′
j 〉0 corresponds to the fields b′ and v′, respectively, and

the end without a slash corresponds to the fields b and v, respectively). The triple vertices (or
interaction vertices) b′

i (−vj ∂jbi +bj∂jvi) = b′
ivjVijlbl and −v′

ivj ∂j vi = v′
ivjWijlvl/2, where

Vijl = i(kj δil − klδij ) and Wijl = i(klδij + kj δil) (in the momentum–frequency representation)
are present in figure 2, where momentum k is flowing into the vertices via the auxiliary fields
b′ and v′, respectively.

The formulation of the problem through the action functional (12) replaces the statistical
averages of random quantities in the stochastic problem defined by equations (7)–(10) with
equivalent functional averages with weight exp S(�). The generating functionals of the
total Green’s functions G(A) and connected Green’s functions W(A) are then defined by the
functional integral

G(A) = eW(A) =
∫

D� eS(�)+A�, (17)

where A(x) = {Ab, Ab′
, Av, Av′ } represents a set of arbitrary sources for the set of fields

�,D� ≡ DbDb′DvDv′ denotes the measure of functional integration, and the linear form
A� is defined as

A� =
∫

dx
[
Ab

i (x)bi(x) + Ab′
i (x)b′

i (x) + Av
i (x)vi(x) + Av′

i (x)v′
i (x)

]
. (18)

3. Renormalization group analysis and scaling regime

The information about possible UV divergences in the model can be found by the standard
analysis of canonical dimensions (see, e.g., [8, 7]). The dynamical model (12) belongs to the
class of the so-called two-scale models [8, 11, 12], i.e., to the class of models for which the
canonical dimension of some quantity F is given by two numbers, namely, the momentum

7
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Table 1. Canonical dimensions of the fields and parameters of the model under consideration.

F v v′ b b′ m,
, μ ν0, ν g0 g, u0, u

dk
F −1 d + 1 0 d 1 −2 2ε 0

dω
F 1 −1 −1/2 1/2 0 1 0 0

dF 1 d − 1 −1 d + 1 1 0 2ε 0

dimension dk
F and the frequency dimension dω

F . To find the dimensions of all quantities it
is convenient to use the standard normalization conditions dk

k = −dk
x = 1, dω

ω = −dω
t = 1,

dω
k = dω

x = dk
ω = dk

t = 0, and the requirement that each term of the action functional must
be dimensionless separately with respect to the momentum and frequency dimensions. The
total canonical dimension dF is then defined as dF = dk

F + 2dω
F (it is related to the fact that

∂t ∝ ∂2 in the free action (12) with choice of zero canonical dimensions for ν0 and u0). In
the framework of the theory of renormalization the total canonical dimension in dynamical
models plays the same role as the momentum dimension does in static models.

The canonical dimensions of our model are present in table 1, where also the canonical
dimensions of the renormalized parameters are shown.

The model (12) is logarithmic at ε = 0 (the coupling constants g0 is dimensionless);
therefore, in the framework of the minimal subtraction (MS) scheme [7], which is always
used in what follows, possible UV divergences in the correlation functions have the form
of poles in ε. It is well known that the superficial divergences can be present only in the
1-irreducible Green’s functions for which the corresponding total canonical dimensions are
a nonnegative integer. Detail analysis shows that for spatial dimensions d > 2 superficially
divergent functions of our model are only functions 〈v′v〉1−ir and 〈b′b〉1−ir and, in this case,
the action (12) has all necessary tensor structures to remove divergences multiplicatively (see,
e.g., [7, 8]). All divergences can be removed by the counterterms of the forms v′�v and b′�b
what can be explicitly expressed in the multiplicative renormalization of the parameters g0, u0

and ν0 in the form

ν0 = νZν, g0 = gμ2εZg, u0 = uZu, (19)

where the dimensionless parameters g, u and ν are the renormalized counterparts of the
corresponding bare ones, μ is the renormalization mass (a scale-setting parameter), an
artifact of the dimensional regularization. Quantities Zi = Zi(g, u; d; ε) are the so-called
renormalization constants and they contain poles in ε.

The renormalized action functional has the following form:

SR(�) = 1

2

∫
dt1 ddx1 dt2 ddx2[v′

i (x1)D
v
ij (x1; x2)v

′
j (x2) + b′

i (x1)D
b
ij (x1; x2)b

′
j (x2)]

+
∫

dt ddx{v′[−∂t + νZ1� − (v · ∂)]v

+ b′[−∂tb + νuZ2�b − (v · ∂)b + (b · ∂)v]}. (20)

By comparison of the renormalized action (20) with definitions of the renormalization constants
Zi, i = g, u, ν, which are given in (19), we come to the relations among them:

Zν = Z1, Zg = Z−3
1 , Zu = Z2Z

−1
1 . (21)

The renormalization constants Z1 and Z2 are determined by the requirement that the
one-particle irreducible Green’s functions 〈v′v〉1−ir and 〈b′b〉1−ir must be UV finite when are
written in the renormalized variables, i.e., they have no singularities in the limit ε → 0. On the

8
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Σb b =

Σv v =

Figure 3. The one-loop diagrams that contribute to the self-energy operators 
v′v and 
b′b .

other hand, these one-particle irreducible Green’s functions are related to the corresponding
self-energy operators 
v′v and 
b′b, which are expressed via Feynman diagrams, by the
Dyson equations. In frequency–momentum representation they can be written in the following
form

〈v′
ivj 〉1−ir = (−iω + ν0p

2 − 
v′v(ω, p))Pij (p), (22)

〈b′
ibj 〉1−ir = (−iω + ν0u0p

2 − 
b′b(ω, p))Pij (p). (23)

Thus, Z1 and Z2 are found from the requirement that the UV divergences be canceled in (22)
and (23) after the substitution e0 = eμdeZe for e = {g, u, ν}. This determines Z1 and Z2 up
to an UV finite contribution, which is fixed by the choice of the renormalization scheme. In
the MS scheme all the renormalization constants have the form: 1 + poles in ε. In one-loop
approximation the self-energy operators 
v′v and 
b′b are given by Feynman diagrams which
are shown in figure 3 and their explicit analytical form suitable for the representation as shown
in (22) and (23) is given as follows


v′v(p) = − Sd

(2π)d

gνp2

2ε

d − 1

4(d + 2)
, (24)


b′b(p) = − Sd

(2π)d

gνp2

2ε

d − 1

2d(u + 1)
, (25)

where Sd = 2πd/2/�(d/2) denotes the surface of the d-dimensional unit sphere.
Thus, the renormalization constants Z1 and Z2 are given as follows

Z1 = 1 − ḡ

2ε

d − 1

4(d + 2)
, (26)

Z2 = 1 − ḡ

2ε

d − 1

2du(u + 1)
, (27)

where we have introduced suitable notation ḡ = gSd/(2π)d .
The relation S(�, e0) = SR(�, e, μ), where e0 stands for the complete set of bare

parameters and e stands for the renormalized ones, leads to the relation W(A, e0) =
WR(A, e, μ) for the generating functional of connected Green’s functions. By application
of the operator Dμ ≡ μ∂μ at fixed bare parameters e0 on both sides of the last equation one
obtains the basic RG differential equation

DRGWR(A, e, μ) = 0, (28)

9
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where the explicit form of the operator DRG is as follows

DRG = Dμ + βg(g)∂g + βu(g, u)∂u − γν(g)Dν, (29)

where we denote Dx ≡ x∂x for any variable x and the RG functions (the β and γ functions)
are given by the well-known definitions

βg ≡ Dμg = g(−2ε + 3γ1), (30)

βu ≡ Dμu = u(γ1 − γ2), (31)

γi ≡ Dμ ln Zi, i = 1, 2, (32)

γν = γ1, (33)

where relations among renormalization constants (21) were used and Z1 and Z2 are given in
(26) and (27), respectively. Thus, the explicit form of the anomalous dimensions γ1 and γ2

is

γ1 = ḡ
d − 1

4(d + 2)
, γ2 = ḡ

d − 1

2du(u + 1)
. (34)

Standardly, possible scaling regimes of a renormalized model are related to the existence
of IR stable fixed points of the corresponding system of the RG equations [7, 8]. The fixed
point of the RG equations is defined by the β functions, more precisely, by requirement of
their vanishing. In our case, the coordinates g∗, u∗ of the possible fixed points are given by
the system of two equations

βg(g∗, u∗) = βu(g∗, u∗) = 0, (35)

with βg and βu given in (30) and (31). The nontrivial positive solution of this system of
equations is given as follows

ḡ∗ = 8

3

d + 2

d − 1
ε, u∗ = 1

2

(
−1 +

√
9d + 16

d

)
. (36)

On the other hand, the IR stability of the fixed point is given by the condition that the real
parts of the eigenvalues of the matrix of the first derivatives

�ij =
(

∂βg/∂g ∂βg/∂u

∂βu/∂g ∂βu/∂u

)
(37)

must be positive. In our case, the eigenvalues of the matrix (37) taken at the fixed point (36)
are

λ1 = 2ε, λ2 = ḡ∗
d − 1

2d

1 + 2u∗
u∗(u∗ + 1)2

. (38)

As one can see, both eigenvalues are positive for ε > 0 and for positive values of g∗ and u∗.
The above one-loop expressions for the coordinates of the fixed point (36) in our vector

model are the same as the one-loop expressions for the fixed point in the problem of passive
scalar advection by the Navier–Stokes velocity field [36] (see also the pioneer paper [42]).
Thus, although the mathematical structure of the vector model is much more complicated
than the corresponding model of scalar advection, nevertheless their IR scaling behavior is the
same. We shall see in the next section that the same situation arises also for the anomalous
behavior of the models at least at the one-loop level approximation.

10
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Existence of the stable IR fixed point means that the correlation functions of the model
exhibit scaling behavior with given critical dimensions in the IR range. The issue of interest
is especially multiplicatively renormalizable equal-time two-point quantities G(r). Examples
of such quantities are the equal-time structure functions in the inertial interval as they were
defined in (1). The IR scaling behavior of the function G(r) (for r/ l 	 1 and any fixed r/L)

G(r) � ν
dω

G

0 l−dG(r/ l)−�GR(r/L) (39)

is related to the existence of IR stable fixed point of the RG equations (36). In (39) dω
G and dG

are the corresponding canonical dimensions of the function G (the canonical dimensions of
the model are given in table 1), the UV momentum scale 
 = 1/l is defined in (11), R(r/L)

is a scaling function, which, as was already mentioned in introduction, cannot be determined
by the RG equations (see, e.g., [8]), and �G is the critical dimension defined as

�G = dk
G + �ωdω

G + γ ∗
G. (40)

Here γ ∗
G is the fixed point value of the anomalous dimension γG ≡ μ∂μ ln ZG, where ZG is the

renormalization constant of the multiplicatively renormalizable quantity G, i.e., G = ZGGR

[8], and �ω = 2−γ ∗
ν is the critical dimension of the frequency with γ ∗

ν = γ ∗
1 which is defined

in (34) and γ ∗
1 means that γ1 is taken at the fixed point. From (30) and (35) one immediately

finds that γ ∗
ν ≡ γ ∗

1 = 2ε/3. It is the exact one-loop result, i.e., no higher-loop corrections to
the γ ∗

ν exist. It means that the critical dimension of frequency is also known exactly, namely,
�ω = 2(1 − ε/3), as well as the critical dimensions of the fields:

�v = 1 − 2ε

3
, �v′ = d − 1 +

2ε

3
, (41)

�b = −1 +
ε

3
, �b′ = d + 1 − ε

3
. (42)

An example of interesting equal-time quantities built of the magnetic field b are the
equal-time structure functions defined in analogy with (1)

SN(r) = 〈[br(t, x) − br(t, x′)]N 〉. r = |x − x′|. (43)

They are important tools in the analysis of the MHD turbulence within the inertial range
l � r � L but, in what follows, we shall concentrate on simpler equal-time quantities,
namely, on the equal-time two-point correlation functions

BN−m,m(r) ≡ 〈
bN−m

r (t, x)bm
r (t, x′)

〉
, r = |x − x′| (44)

i.e., we shall analyze the equal-time correlation functions built of two composite operators
bN−m

r (t, x) and bm
r (t, x). The reason is twofold: first, the structure functions (43) are given

by linear combinations of the correlation functions (44); hence the scaling behavior of the
structure functions (43) emerges from the scaling behavior of the correlation functions (44) also
as a linear combination. Second, there is no special need to investigate the structure functions
(which are more complex quantities) instead of their building blocks, the correlation functions
(44), as a result of the fact that contrary to the passive scalar advection by incompressible
velocity field the stochastic equation for the vector field b (7) is not invariant under the shift
b → b + b0, where b0 is a constant vector.

Applying the general scaling representation for the equal-time quantity G(r) given in (39)
with the critical dimension �G given in (40) to the correlation functions (44) one comes to the
result

BN−m,m(r) � ν
−N/2
0 lN (r/ l)N(1−ε/3)−γ ∗

N−m−γ ∗
mRN,m(r/L), (45)

11
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where γ ∗
N−m and γ ∗

m are the fixed point values of the anomalous dimensions of the composite
operators bN−m

r and bm
r , respectively and the scaling functions RN,m(r/L) remain unknown

within the standard RG analysis.
On the other hand, the behavior of the functions RN,m(r/L) in the limit r/L → 0 can

be estimated using the OPE, which leads to the following asymptotic form of the scaling
functions in the given limit:

RN,m(r/L) =
∑

i

CFi
(r/L)(r/L)�Fi , (46)

where CF (r/L) are coefficients regular in r/L and the summation is implied over all possible
renormalized composite operators Fi allowed by symmetry with critical dimensions �Fi

. In
the case under consideration the leading contribution (with the smallest critical dimensions)
into the OPE (46) is given by the operators Fi having the form

F [N,p] = bi1 · · · bip (b · b)n, N = 2n + p, (47)

which allow also to take into account effects of anisotropy (see the next section). In purely
isotropic situation the set of operators (47) is reduced to the operator FN = (b · b)N/2. Thus,
by using expression (40) for the critical dimension, the final asymptotic behavior of the
correlation functions (44) will be given as follows

BN−m,m(r) � ν
−N/2
0 LN

(
l

L

)Nε/3 (
r

l

)−γ ∗
N−m−γ ∗

m
(

r

L

)γ ∗
N

∼ r−γ ∗
N−m−γ ∗

m+γ ∗
N , (48)

where γ ∗
N are the anomalous dimensions of the composite operators FN = (b · b)N/2 (see

the next section for details). For special cases m = 0 or m = N the correlation functions
BN−m,m(r) are reduced to the constants, namely,

BN,0 ≡ B0,N � ν
−N/2
0 LN

(
l

L

)Nε/3

. (49)

On the other hand, in the anisotropic case, the asymptotic behavior of the correlation
functions (44) will be driven by the set of critical dimensions which corresponds to the
composite operators which are mixed during the renormalization and the leading contribution
to the asymptotic behavior of the correlation functions will be given by the smallest critical
dimensions. It is the main aim of the following section to analyze this issue in more details
and to find the explicit form of the critical dimensions for needed composite operators (47)
in the case with the presence of large-scale anisotropy in the one-loop approximation. It will
lead to the explicit form for the inertial-range behavior of the single-time correlation functions
BN−m,m.

4. Renormalization and critical dimensions of composite operators and anomalous
scaling

4.1. Operator product expansion

The OPE [7, 8, 11, 12] asserts that the equal-time product F1(x
′)F2(x

′′) of two renormalized
composite operators1 at x = (x′ + x′′)/2 = const and r = x′ − x′′ → 0 can be written in the
following form:

F1(x
′)F2(x

′′) =
∑

i

CiFi(t, x), (50)

1 By definition we use the term ‘composite operator’ for any local monomial or polynomial constructed from primary
fields and their derivatives at a single point x ≡ (t, x). Constructions θn(x) and [∂iθ(x)∂iθ(x)]n are typical examples.

12
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where the summation is taken over all possible renormalized local composite operators Fi

allowed by symmetry with definite critical dimensions �Fi
, and the functions Ci are the

corresponding Wilson coefficients regular in L−2. The renormalized correlation function
〈F1(x

′)F2(x
′′)〉 can now be found by averaging (50) with the weight exp SR with SR from

(20). The quantities 〈Fi〉 appear on the right-hand side and their asymptotic behavior in
the limit L−1 → 0 is then found from the corresponding RG equations and has the form
〈Fi〉 ∝ L−�Fi .

As was already mentioned in introduction, the specific feature of the turbulence models is
the existence of operators with negative critical dimensions in the OPE (the so-called dangerous
operators) which determine the IR behavior of the scaling functions and lead to their singular
dependence on L when r/L → 0.

Two-point correlation functions (44) are averages of products of composite operators
bN

r (t, x) at two separate space points: bN−m
r (t, x)bm

r (t, x′). Therefore, it is evident that the
leading contribution to the OPE will be given by the closed set of operators generated by the
operator bN

r (t, x) (it is given by the fact that not only do the operators which are present in
the corresponding Taylor expansion enter into the OPE but also all possible operators that
admix to them in renormalization, see the next subsection for details). In the isotropic case
the principal role is played by the composite operators FN = F2n = (b · b)n. On the other
hand, in the model with the presence of uniaxial anisotropy (large- or small-scale) the leading
contribution of the Taylor expansion is given by the tensor composite operators constructed
solely of the fields b without derivatives given in (47), where p denotes the free vector
indices.

4.2. Composite operators F [N,p]: renormalization and critical dimensions

Let us briefly discuss renormalization of the composite operators (47). The necessity of
additional renormalization of the composite operators (47) is related to the fact that the
coincidence of the field arguments in Green’s functions containing them leads to additional
UV divergences. These divergences must be removed by a special kind of renormalization
procedure which can be found, e.g., in [7, 8], where their renormalization is studied in general.
As for the renormalization of composite operators in the models of turbulence it is discussed
in [11, 12]. Typically, the composite operators are mixed under renormalization. Therefore,
let us briefly discuss this issue [8].

Let F ≡ {Fα} be a closed set of composite operators which are mixed only with each
other in renormalization. Then the renormalization matrix ZF ≡ {Zαβ} and the matrix of
corresponding anomalous dimensions γF ≡ {γαβ} for this set are given as follows

Fα =
∑

β

ZαβFR
β , γF = Z−1

F DμZF . (51)

Renormalized composite operators are subject to the following RG differential equations⎛
⎝Dμ +

∑
i=g,u

βi∂i − γνDν

⎞
⎠ FR

α = −
∑

β

γαβFR
β , (52)

which lead to the following matrix of critical dimensions �F ≡ {�αβ}
�F = dk

F + �ωdω
F + γ ∗

F , �ω = 2 − γ ∗
ν , (53)

where dk
F a dω

F are diagonal matrices of corresponding canonical dimensions and γ ∗
F is the

matrix of anomalous dimensions (51) taken at the fixed point. In the end, the critical dimensions

13
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of the set of operators F ≡ {Fα} are given by the eigenvalues of the matrix �F . The so-called
‘basis’ operators that possess definite critical dimensions have the form

F bas
α =

∑
β

UαβFR
β , (54)

where the matrix UF = {Uαβ} is such that �′
F = UF �F U−1

F is diagonal.
As was discussed in the previous subsection, in what follows, the central role is played by

the tensor composite operators given in (47). It is convenient to deal with the scalar operators
obtained by contracting the tensors with the appropriate number of the uniaxial anisotropy
unit vectors n [27],

F [N,p] = [n · b]p(b · b)n, N = 2n + p, (55)

As can be shown by direct analysis of the diagrams the composite operators (55) with different
N are not mixed in renormalization, and therefore the corresponding renormalization matrix
Z[N,p][N ′,p′] is in fact block-diagonal, i.e., Z[N,p][N ′,p′] = 0 for N ′ �= N (see, e.g., [27] for
details). Thus, in general, one can write

F [N,p] =
�N/2�∑
l=0

Z[N,p][N,N−2l]F
R[N,N − 2l], (56)

where �N/2� means the integer part of the N/2. Therefore, each block of renormalization
constants with given N is an (�N/2� + 1) × (�N/2� + 1) matrix. Of course, the matrix of
critical dimensions (53), whose eigenvalues at IR stable fixed point are the critical dimensions
�[N,p] of the set of operators F [N,p], has also dimension (�N/2� + 1) × (�N/2� + 1).

Equation (56) represents a general situation but, as we shall see, in our model with the
presence of large-scale anisotropy the elements Z[N,p][N,p′] vanish for p < p′; thus the block
Z[N,p][N,p′] is in fact triangular along with the corresponding blocks of the matrices UF and �F

from (54) and (53). Therefore, the critical dimensions of the basis operators will be directly
given by the diagonal elements of the corresponding matrix.

Let us turn to the calculation of the renormalization constants Z[N,p][N,p′] in the one-loop
approximation. We shall proceed as in [24, 27, 29]. If we denote as �(x; b) the generating
functional of the 1-irreducible Green’s functions with one composite operator F [N,p] from
(55) and any number of fields b then we are interested in the Nth term of the expansion of
�(x; b) in b, which we denote �N(x; b). It has the following form [24]

�N(x; b) = 1

N !

∫
dx1 · · ·

∫
dxNbi1(x1) · · · biN (xN)

×〈F [N,p](x)bi1(x1) · · · biN (xN)〉1−ir , (57)

where summations over dummy indexes are understood. In the one-loop approximation it is
given as

�N = F [N,p] + �(1), (58)

where �(1) is given by the analytical calculation of the diagram in figure 4 and the first term
in (58) represents ‘tree’ approximation (55).

The black circle with two attached lines in the diagram in figure 4 denotes the variational
derivative Vij (x; x1, x2) ≡ δ2F [N,p]/δbi(x1)δbj (x2), where the second variation makes
needed combinatorics, namely, the operator F [N,p] contains N components of the field b
and one must take two of them (in all possible ways) to construct the one-loop diagram as it
is shown in figure 4. It can be represented in the following convenient form [27]

Vij (x; x1, x2) = δ(x − x1)δ(x − x2)
∂2

∂ai∂aj

[(na)p(a2)n], (59)
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Γ(1) = 1
2

Figure 4. Graphical representation of the one-loop correction to �N in equation (58).

where a constant vector ak will be substituted with bk(x) after the differentiation. Analytical
form of the diagram in figure 4 (without the symmetry factor 1/2) is the following:∫

dx1 · · ·
∫

dx4Vij (x; x1, x2)〈bi(x1)b
′
k(x3)〉0

×〈bj (x2)b
′
l (x4)〉0〈∂pvk(x3)∂qvl(x4)〉0bp(x3)bq(x4), (60)

where the bare propagators are given in (13) and (16). The derivatives of the velocity fields
are related to the second term of the ordinary vertex factors b′

i (−vj ∂jbi + bj∂jvi) shown in
figure 2. The first terms of the vertices are omitted because they are proportional to the
derivatives of the field b and we know that the UV divergent part of the diagram is proportional
to the N factors b without derivatives.

By setting the external momentum in the integrand equal to zero because the UV
divergent part of the diagram in figure 4 is free of external momentum and after some simple
manipulations the UV divergent part can be written in the following compact form:

akal

∂2

∂ai∂aj

[(na)p(a2)n]Xij,kl, (61)

where Xij,kl in the momentum–frequency representation (suitable for the further calculations),
after simple integration over the frequency, has the form

Xij,kl = g0

2u0(1 + u0)

∫
dq

(2π)d

qkql

k2+d+2ε
Pij (q). (62)

After integration over the momentum q and simple tensor manipulations one obtains the
following result for the diagram shown in figure 4 (the symmetric factor 1/2 is included)

ḡ

2ε

(
μ

m

)2ε {Q1F [N,p − 2] + Q2F [N,p]}
4d(d + 2)u(1 + u)

, (63)

where we have substituted the unrenormalized quantities with the renormalized one, ai have
been replaced with the components of the field bi (thus they again form the operators F [N, q],
with q = p − 2 and p), and the coefficients Qi, i = 1, 2 are

Q1 = p(p − 1)(d + 1), (64)

Q2 = 4n(d − 1)(n + p − 1) + 2n(d(d + 1) − 2) − 2p(p − 1). (65)

Now, using the standard renormalization procedure the renormalization constants
Z[N,p][N,p′] defined in (56) are found from the requirement that function (58) be UV finite
(contains no poles in ε) when written in renormalized variables and with the replacement
F [N,p] → FR[N,p], namely,
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Z[N,p][N,p−2] = ḡ

8d(d + 2)u(u + 1)ε
Q1, (66)

Z[N,p][N,p] = 1 +
ḡ

8d(d + 2)u(u + 1)ε
Q2, (67)

with coefficients Qi given in (64) and (65). Using the definition of the matrix of anomalous
dimensions γ[N,p][N ′,p′] as given in (51) we obtain the following result

γ[N,p][N,p−2] = − ḡ

4d(d + 2)u(u + 1)
Q1, (68)

γ[N,p][N,p] = − ḡ

4d(d + 2)u(u + 1)
Q2, (69)

and the desired matrix of critical dimensions (53) has the form

�[N,p][N,p′] = −N

(
1 − ε

3

)
+ γ ∗

[N,p][N,p′], (70)

where the asterisk means that the quantities are taken at the corresponding fixed point (see
section 4).

In the end, the critical dimensions �[N,p] are given by the eigenvalues of the matrix (70)
but, because the matrix γ[N,p][N,p′] is triangular in our case, the eigenvalues of the matrix of
critical dimensions �[N,p][N,p′] are given directly by the diagonal elements γ[N,p] ≡ γ[N,p][N,p],
namely,

�[N,p] = −N

(
1 − ε

3

)
+ γ ∗

[N,p], (71)

where γ[N,p] is given in (69) and taken at the fixed point.

4.3. Anomalous scaling of the correlation functions in one-loop approximation

Thus, now when one applies the above results given in (65), (69) and (71) in representation (45)
the final asymptotic inertial range expression (48) for the single-time correlation functions (44)
is obtained where, in our anisotropic case (for more details see, e.g., [24]), the corresponding
fixed point values of the anomalous dimensions γ ∗

N are replaced by the anomalous dimensions
γ ∗

[N,p] with value of p which corresponds to the minimal value of γ ∗
[N,p], namely,

BN−m,m(r) ∼ r
−γ ∗

[N−m,pN−m ]−γ ∗
[m,pm ]+γ ∗

[N,pN ] , (72)

where we have denoted as pq the value of p for which the corresponding γ ∗
[q,p] have a minimal

value.
First of all, let us analyze the general expression for anomalous dimensions γ ∗

[N,p] for the
fixed point values ḡ∗ and u∗ as are defined in (36). It leads to the result

γ ∗
[N,p] = − ε

3(d − 1)(d + 2)
Q2, (73)

where Q2 is given in (65) and we recall that N = 2n + p. Up to normalization, the expression
(73) is the same as the one loop result obtained within the kinematic MHD Kazantzev–
Kraichnan model analyzed in [24] (see the corresponding (6.17) and (6.18) in [24]). After
simple analysis one finds that the following important hierarchies are obeyed by anomalous
dimensions γ ∗

N,p (of course, the same is also true for critical dimensions �[N,p]):

γ ∗
[N,p] < γ ∗

[N,p′], p < p′, (74)
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γ ∗
[N,0] < γ ∗

[N ′,0], N > N ′, (75)

γ ∗
[N,1] < γ ∗

[N ′,1], N > N ′, (76)

where (75) is valid for even values of N and N ′ and (76) is valid for odd values of N and N ′,
respectively.

Using the hierarchy relations (74)–(76) one can write the following formulae for
asymptotic behavior of the correlation functions BN−m,m(r) as functions of N and m:

BN−m,m(r) ∼ rγ ∗
[N,0]−γ ∗

[N−m,0]−γ ∗
[m,0] , (77)

which holds for even values of N and m,

BN−m,m(r) ∼ rγ ∗
[N,0]−γ ∗

[N−m,1]−γ ∗
[m,1] , (78)

which is valid for even value of N and odd value of m, and

BN−m,m(r) ∼ rγ ∗
[N,1]−γ ∗

[N−m,0]−γ ∗
[m,1] , (79)

for odd values of N and m. The fourth possibility, namely, odd N and even m is equivalent to
the last case.

In the end, using the explicit expression for the fixed point value of the anomalous
dimension γ[N,p] as given in (73) one obtains the explicit form for the asymptotic behavior of
the correlation functions BN−m,m(r), namely,

BN−m,m(r) ∼ r
− 2ε

3(d+2)
A
, (80)

where

A =
⎧⎨
⎩

(N − m)m for even N and m

(N − m)m + d + 1 for even N and odd m

(N − m)m for odd N and m

⎫⎬
⎭ (81)

which exactly coincides (up to normalization) with the one-loop results obtained within the
models of vector passive advection by the velocity field with a Gaussian statistics for both
δ-correlated in time velocity field [24] and finite time correlations of the velocity field [33].
Therefore, all important conclusions about the persistence of large-scale anisotropy at small
scales done in [24, 33] are also valid in our situation. Nevertheless, let us briefly analyze the
problem within our model.

The persistence of the anisotropy in the inertial interval can be studied by the dimensionless
ratio of the correlation functions of the field b (see, e.g., [24])

RN =
〈
bN−1

r (t, x)br(t, x′)
〉

〈br(t, x)br(t, x′)〉N/2
. (82)

Now, using the explicit expression (48), where dependence on the inner scale l and the outer
scale L is considered, one comes to the following representation of RN for even and odd values
of N, namely,

R2n ∝
(

r

l

)−γ ∗
[2n−1,1]

(
r

L

)γ ∗
[2n,0]−nγ ∗

[2,0]

, (83)

R2n+1 ∝
(

r

l

)−γ ∗
[2n,0]

(
r

L

)γ ∗
[2n+1,1]−(n+1/2)γ ∗

[2,0]

, (84)

where γ ∗
[N,p] is given in (73). The above expressions can be estimated as functions of the

Reynolds number Re by using the definition Re = (L/l)4/3 and by replacement r → l [43]
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R2n ∝ Re
ε n(n−1)

(d+2) , (85)

R2n+1 ∝ Re
ε 4n2−d−2

4(d+2) , (86)

and after substitution of the real value ε = 2 one obtains the final result

R2n ∝ Re
2 n(n−1)

(d+2) , (87)

R2n+1 ∝ Re
4n2−d−2

2(d+2) , (88)

which is equivalent to the result obtained within the kinematic MHD Kazantzev–Kraichnan
model at one-loop level [24] by the replacement of the Reynolds number Re with the so-called
Péclet number Pe.

The leading contribution to the even correlation functions (72) is given by the isotropic
shell; therefore the behavior of the even functions RN (82) is equal to the isotropic model as it
is evident from (85) and (87). On the other hand, the nontrivial persistence of anisotropy deep
inside of the inertial-range is manifested by the non-vanishing of the odd order correlation
functions which must be equal to zero by the symmetry arguments in the isotropic case. This
leads to the non-vanishing of the odd ratios (86) and (88), respectively. Among the odd
functions RN the function R3 has special behavior, namely, it decreases for Re → ∞. For
example, for d = 3 one has R3 ∝ Re− 1

10 . At the same time, the odd functions Rn for n � 5
increase with Re [24], e.g., for d = 3 one obtains R5 ∝ Re

11
10 .

However, it must be stressed that the same asymptotic behavior of the models with
Gaussian spatial statistics of the velocity field [24, 29] and non-Gaussian statistics of the
velocity field (present paper) is an artifact of the one-loop approximation. Thus, it is necessary
to investigate, at least, two-loop approximation to obtain more complete picture about
behaviors of the different models. Unfortunately, for the present, no two-loop calculations of
passively advected vector field by the Gaussian or non-Gaussian velocity fields were done.
This situation is diametrically different from the passive scalar advection, where two-loop
corrections (as for the simplest Kraichnan model also three-loop corrections are calculated
[26]) are completely analyzed by the field theoretic RG technique (see, e.g., [25, 29, 36]).

5. Conclusion

Using the field theoretic RG technique and the OPE we have investigated the influence of
uniaxial large-scale anisotropy on the behavior of a passive vector (e.g., weak magnetic field)
advected by the non-Gaussian solenoidal velocity field governed by the stochastic Navier–
Stokes equation in the framework of the so-called kinematic MHD turbulence in one-loop
approximation. The coordinates of the stable IR fixed point are found which drive the IR
asymptotic scaling behavior within the inertial range with definite exponents in accordance
with the famous second Kolmogorov hypothesis of the KO theory. It is an exact one-loop
result, i.e., it has no higher-loop corrections.

Further, we have investigated the influence of large-scale anisotropy on the anomalous
scaling of the single-time correlation functions of a passively advected vector field using
the OPE technique. The corresponding leading composite operators in the OPE with the
smallest (the most negative) critical dimensions are identified and studied in detail to find
their anomalous dimensions. Their hierarchical ordering in amount of anisotropy is briefly
discussed. Consequently, these anomalous dimensions are used for the construction of the
critical dimensions of the corresponding single-time correlation functions BN−m,N and their
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explicit dependence on the order of the correlation functions, as well as on the parameter
which characterizes the anisotropy shells is established. The final one-loop asymptotic scaling
behavior of the correlation functions deep inside the inertial range in the presence of the
large-scale anisotropy is shown in (80) and (81). It is given by the anomalous dimensions of
the operators from the isotropy shell and of the operators that are close to the isotropy shell.
The persistence of anisotropy within inertial range is demonstrated by the behavior of the odd
dimensionless ratios of the correlation functions (analogs of the skewness and hyperskewness
built by the dimensionless ratios of structure functions of a passive scalar advected by given
statistics of the velocity field) and their asymptotic behavior is established as functions of the
Reynolds number Re.

Up to normalization factors, the obtained results are the same as one-loop expressions
calculated within the toy models of passive vector advection by the ‘synthetic’ turbulent flows
(see, e.g., [24, 33]). On the other hand, the anomalous dimensions of the important composite
operators of our model, namely, of the operators built solely by the magnetic field b without
derivatives, are the same as the one-loop anomalous dimensions of the composite operators
built solely by the gradients of a scalar field within the models of a passive scalar advection by
a Gaussian velocity field with δ-correlations in time [25], with finite correlations in time [29],
as well as in the case, where the advection is given by a non-Gaussian velocity field governed
by the stochastic Navier–Stokes equation [36].

However, it is evident that such kind of nondependence of anomalous behavior on the
structure of the turbulent flow, as well as on the internal tensor structure of the advected field
is an artifact of the one-loop approximation. As was shown in [36] within the advection of a
passive scalar field, the two-loop corrections to the anomalous exponents in the model with
realistic non-Gaussian velocity field are different from the corresponding exponents obtained
within models with Gaussian velocity fields [25, 30]. The same situation, of course, is expected
within the advection of the passive vector field although we have no two-loop results in this
case. On the other hand, there is another interesting question which waits for an answer,
namely: Is there nontrivial dependence of the anomalous exponents of an advected field on
its internal tensor structure? Within RG technique this question can be directly tested at the
two-loop level results but they are absent at the moment. Thus, the question is still open.
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